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A simple model is proposed for the buckling and coiling instability of a viscous “fluid rope” falling on a
plane. By regarding a fluid rope as a one-dimensional flow, this model accounts for only the axial and shared
viscous forces. Our model successfully reproduces several experiments with no adjustable parameters, such as
the existence of three distinct coiling regimes reported in the paper by Maleki et al. �Phys. Rev. Lett. 93,
214502 �2004��. Our model allows for the discussion of unsteady motion. An expression for the critical fall
height at which the coiling frequency changes from a decrease to increase was phenomenologically derived. It
was found that the coil-uncoil transition shows remarkable hysteresis only for weak gravity condition.
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In the low Reynolds number regime, the dynamics of vis-
cous fluid confined in rigid boundaries does not exhibit com-
plex behavior because the possible eigenmodes are limited.
However, if the fluid interface can move freely and deform
largely, this is not the case, and a rich variety of dynamics
can emerge below a critical Reynolds number. Backing and
coiling instabilities of fluid jets are examples of such sys-
tems, and have been studied for several decades in the labo-
ratory �1–6�. A fluid rope and coiling can also be observed in
daily life, such as when honey is poured from a teaspoon
onto toast.

Although the mathematical treatment of a largely de-
formed fluid is not theoretically straightforward, the condi-
tions for the onset of coiling instability have been thoroughly
examined in terms of linear stability analysis with some sim-
plifications and assumptions �7–9�.

Recently, Ribe derived the differential equations to de-
scribe steady state coiling for a very thin rotating rope, and
showed the numerical solutions for various conditions �10�.
His analysis reveals that the steady solution is multivalued so
that there might be a discontinuity in the selected coiling
frequency.

Ribe also demonstrated the existence of three distinct
coiling modes: viscous, gravitational, and inertial regimes.
Phenomenologically, one could understand that buckling and
coiling instability occurs under the mechanical balance be-
tween the driving force of a steady flow and the internal
stress due to viscosity. Signifying the magnitudes of force for
fluid injection as FP, the gravitational force acting to fluid as
FG, the inertial force as FI, and the yielding stress due to
viscosity as FV, the viscous coiling regime corresponds to the
condition FP�FV, the gravitational coiling regime FG�FV,
and the inertial coiling regime FI�FV, respectively. Dimen-
sional analysis allows for the estimation of the coiling fre-
quencies for each regime as

�V =
Q

Ha2 , �1�

�G = �gQ3

�a8 �1/4
, �2�

�I = � Q4

�a10�1/3
, �3�

where Q is the flow rate, H is the fall height, � is the kinetic
viscosity, g is the gravitational acceleration, and a is the
radius of the rope.

Although these studies seem to succeed in giving the on-
set of coiling with infinitesimal amplitude and steady coiling
frequencies, in order to discuss the stability and further tur-
bulent states, a numerical model is still needed that can de-
scribe the entire dynamics including transient states with
fewer computational costs.

In this Rapid Communication, an alternative numerical
model for a small deflection in a fluid rope is proposed and
coiling frequency as a function of fall height is investigated.
In addition, the coil-uncoil transition and its hysteresis effect
are discussed, as well as the transition height from viscous to
gravitational coiling.

Figure 1 is a schematic view of a fluid rope injected from
an orifice at a sufficient height. We fix the origin of the
reference flame at the point where the rope begins to coil and
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FIG. 1. �Color online� A schematic view of a fluid rope
coiling.
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align the z axis parallel to gravity g. In the present model, we
require a “steady coiling state� in which the upward growth
speed of the coil is balanced by the speed of downward flow
at the top of coil, i.e., the point at which the rope changes to
the coil does not move.

We consider a uniform flow within the rope and write the
flow velocity as w=wn, where n= �nx ,ny ,nz� is the unit vec-
tor tangential to the rope. Since we restrict the present model
to the case of slight deflection, the vector n is almost parallel
to the z axis. We take account of only the first order of nx and
ny, and replace the derivative with respect to n by the deriva-
tive with respect to z. In this manner, the axial stress is writ-
ten as �n=3��w /�z, where 3� is the extension �or compres-
sion� viscosity �11�. Hereafter, we scale flow speed with the
injection speed at the nozzle win and length with the orifice
diameter d. Then, the dimensionless equation of motion for
w is

� �
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+ w
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�z
�w =

3
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�z
�S

�w

�z
� −

1
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, �4�

where Re=d�win� /� is the Reynolds number and Fr=win
2 /gd

is the Froude number. S is the rope’s cross-sectional area
taken to be parallel to the xy plane. We determine S by solv-
ing the following continuity equation:

�S

�t
=

�

�z
�Sw� . �5�

In order to describe the deformation of the fluid rope, we
divide the rope into thin cylindrical elements whose motion
is restricted in the xy plane, as shown in Fig. 1. Denoting the
position of the element q= �qx ,qy� and velocity u= �ux ,uy�,
these quantities obey

� �

�t
+ w

�

�z
�qi = ui, �6�

where i=x and y. The total stress acts on the
cylindrical element is the sum of viscous shear stress
�i=���ui+wni� /�z and the ith component of the axial stress
ni�n. Therefore, we obtain the equation of motion for a cy-
lindrical element as
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Next, we discuss the boundary conditions of the present
model. At the injection point z=H, the fluid rope is fixed, or

qi�H� = 0, ui�H� = 0, �8�

and S�H�=� /4. We neglect the relaxation of Poiseuille flow
to plug flow in the neighborhood of the orifice, and assume a
uniform flow at the injection point as w�H�=−1. Let us turn
to the boundary conditions at z=0. We assume that

qi��0� = 0, ui��0� = 0, �9�

where a prime indicates a derivative with respect to z. Let
wmax be the maximum of �w�z��. Experimentally, Cruicks-
hank and Munson found a relation wb�−0.13wmax, where wb
is the downward flow speed at the top of the coiling region

�12�. This relation is fairly independent of flow conditions
such as the viscosity of the liquid, the orifice diameter, or the
fall height. The velocity w�0� in the present model corre-
sponds to wb. We therefore require the following time depen-
dent boundary condition:

w�0� = − 0.13wmax. �10�

We numerically solve Eqs. �4�–�7� setting an axial flow,
w�z�=−1, S�z�=� /4, qi�z�=0, and ui�z�=0 as an initial con-
dition. For qi�z�, a small roughness with amplitude of 0.01 is
given. The tangent vector n is calculated from the derivative
of q with respect to z as n= ��qx /�z ,�qy /�z ,1� /C with
C=���qx /�z�2+ ��qy /�z�2+1. The control parameters of the
numerical calculations are Re, Fr, and the fall height H.

Figure 2 shows trajectories of q in the plane z=0. Simu-
lation movies are available �13�. In the case that Re is suffi-
ciently large, the axial stagnation flow is stable, thus the
trajectory converges to the origin, as shown in Fig. 2�a�.
Such an axial flow could appear under no gravity condition.
When we set Re smaller than a critical value, the flow starts
to oscillate and a circular trajectory would appear at the
steady state �Fig. 2�b��.

Most experimental works on fluid rope coiling discuss
coiling frequency as a function of the fall height �1–5� or the
rope’s radius �6�. Let us compare the coiling frequency of the
present model with the experiments. To investigate the vis-
cous coiling regime as a first step, Fr is set to a very large
value, since the viscous coiling takes place when the effect
of gravity is small. Figure 3�a� shows a dimensionless fre-
quency �d /win as a function of fall height. We found that
��H−1 for lower fall heights, which agrees with the scaling
relation in viscous coiling. For H /d�10, the frequency is
almost constant. This behavior corresponds to the gravita-
tional coiling, because the rope’s radius hardly depends on
the fall height. In Fig. 3�b�, the frequency-height curves are
rescaled with �V and �G in order to compare the results with
the experiment by Maleki et al. �see the inset�. The transition
from viscous to gravitational coiling occurs at �G /�V�1.
These results are in good agreement with the experiments
including the transient regimes. For a higher fall height of
H�102, the frequency increases as ��H, which agrees with
the earliest observation by Barnes and MacKenzie �1,2�.

Supposing strong stretching a�d due to gravity, the scal-
ing relation Eq. �3� predicts ��H10/3 �5�. In this case, we
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FIG. 2. Trajectories of the bottom of the model rope start
at t=0: �a� Trajectory in the case that axial flow is stable at the
steady state �Re=10.0, Fr=100.0, H /d=10�. �b� Trajectory of cir-
cular coiling �Re=1.0, Fr=1.0, H /d=10�.
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reasonably choose a characteristic time scale �d /g. Accord-
ing to simple dimensional arguments �3�, frequency ��d /g
must have the form

��d/g = f� �Q

gd4 ,
gd3

�2 ,
H

d
� , �11�

where �=� /� is the kinematic viscosity. Here it is noticed
that the first parameter in this function is the ratio of the
viscous force to the gravitational force FV /FG, the second is
the ratio of the gravitational force times the inertia force to
the viscous force FGFI /FV

2, and the third is the slenderness
ratio. Because the strong stretching condition requires
FV /FG	1 and H /d
1, the inertial coiling regime appears
in the condition as follows:

�Q

gd4 �
gd3

�2 	 1,
H

d

 1. �12�

Experimentally, Cruickshank and Munson first found
��H2 for H /d higher than 10, in the condition of �Q /gd4

�0.1–1.7, gd3 /�2�0.1 �3�. Ribe also observed ��H2.5 for
gd3 /�2�10−3 and �Q /gd4�0.5 �4�.

As shown in Fig. 4, the present model gives ��H2.2 for
the similar conditions. These experimental and theoretical
results are successfully consistent. On the other hand, in the
gravitational to inertial transitional range, the experiment
shows a remarkable discontinuous jump in the frequency �in-
set in Fig. 4�. The present model, though, does not reproduce
this behavior.

Next, let us discuss critical fall height H*, around which
coiling frequency changes from decrease to increase �transi-
tion from viscous coiling to gravitational coiling�. In Fig.
3�a�, the transition occurs at H*�6d. However, the H*

should generally be a function of viscosity and gravitational
acceleration. For the first step, we focus on the position
z=� at which the flow velocity w reaches a maximum. Note
that, internal stress of the fluid rope changes from tensile to
compressive at this point. After a flow reaches steady state, it
is observed that � hardly depends on time, even though the
rope is oscillating. In Fig. 5�a�, we plot � at steady state as a
function of fall height. For a shorter fall height, the � is equal
to H. This indicates that the maximum of w appears at the
point of injection and the fluid rope is wholly compressed.
Comparing � with the frequency �d /win shown in Fig. 5�b�,
we can find that the frequency decreases only when the re-
lation �=H occurs. Therefore, viscous coiling appears in the
case in which the whole rope is compressed. Because this
feature can be seen for a wide range of Re and Fr as long as
the viscous coiling regime exists, we claim that the H* is
identical to the maximum of �. The maximum of � can be
realized as a relaxation length of which the effect of the
boundary condition at z=0 can travel through a rope. Using
g and �, we can uniquely construct a dimension of length as
g−1/3�2/3. Therefore,

H* = max��� � g−1/3�2/3, �13�

which is fairly close to the numerically calculated exponents
max����g−0.36�0.86.
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FIG. 3. �Color online� Transition from viscous to gravitational
coiling for Fr=100, 200, and 400. �a� Dimensionless frequency
�d /win versus height in the condition of Re=3. �b� Frequency-
height curve rescaled using the �V and �G. The inset shows the
experimental result by Maleki et al. �4�.
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FIG. 4. �Color online� Dimensionless frequency ��d /g versus
height obtained from the present model. Parameters are
�Q /gd4=0.2 and gd3 /�2=0.2 �open circle�, �Q /gd4=0.3 and
gd3 /�2=0.3 �triangle�, and �Q /gd4=0.2 and gd3 /�2=0.5 �rect-
angle�. The inset shows the experimental result by Maleki et al. �4�.
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FIG. 5. �a� Numerically calculated value of zc for Re=3 and
Fr=100. The solid line is the plot of �=H. �b� Same data with Fig.
3 for comparison.
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Finally, we refer to a new and unforeseen result obtained
from the present model. It is empirically known that fluid
ropes do not coil if the Reynolds number of the flow is
sufficiently large. We investigated the upper limit of the Rey-
nolds number of the present model and found that the tran-
sition occurs with remarkable hysteresis. In the simulation,
we continuously add perturbation of amplitude 10−6d for qi.
Fixing Fr and H, the value of Re is slowly increased or

decreased not faster than 0.1% change per one cycle of
coiling. Figure 6�a� shows the coil-uncoil transition for
weak gravity condition �Fr=104�. For increasing Re, the
coiling radius sharply falls down at Re�3.3�Re

h
*� and for

decreasing Re, the radius somewhat gradually rises at
Re�0.7�Re

l
*�. Axial flow is absolutely stable at Re�Re

h
*,

and is absolutely unstable at ReRe
l
*. In the intermediate

region �Re
l
*ReRe

h
*�, the fluid rope starts to coil if the

amplitude of the perturbation is of order unity. In Fig. 6�b�,
we show the coiling regime in the Re-Fr plane for increasing
and decreasing the Reynolds number. The hysteresis sud-
denly disappears for Fr less than about 400. We do not have
a clear explanation for this drastic behavior yet. However, we
observe that the height � starts to decrease from H roughly at
Fr	103, therefore, a crossover of viscous and gravitational
coiling regimes should exist around Fr=400. From these
facts, we expect that the viscous coiling has an hysteresis
effect for coil-uncoil transition. To verify this, further experi-
ments or direct numerical simulation should be carried out.

The model we proposed in the present Rapid Communi-
cation could also reproduce recently reported meandering in-
stability of a viscous fluid rope falling onto a moving surface
�14� by simply replacing one of the boundary conditions in
Eq. �9� as qx��0�=s, where s is the constant share rate. Further
analysis of this problem is our next work and will appear
elsewhere in the near future.
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FIG. 6. �Color online� �a� Numerically calculated coiling radius
for Fr=104 and H=15 with increasing and decreasing Re. �b� The
coiling regime in the Re-Fr plane for decreasing ��� and increasing
��� Reynolds number.
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